

Efektywne wykorzystanie Komputerów Dużej Mocy w chemii obliczeniowej

Klemens Noga

ACK Cyfronet AGH

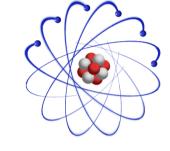
Wydział Chemii Uniwersytetu Jagiellońskiego, Kraków, 30 X 2015

Efficient usage of HPC clusters in computational chemistry

Klemens Noga

ACC Cyfronet AGH

Jagiellonian University, Chemistry Department, Kraków, 30 X 2015



- Access to HPC clusters
- Performing calculations
 - Zeus cluster
 - queuing systems
 - best practices
 - Prometheus
- Documentation and user support

- All PLGrid HPC clusters use Linux as OS
 - Scientific Linux 6 on Zeus
 - CentOS 7 on Prometheus

- HPC clusters contain
 - user interface (UI) node(s)
 - computing nodes (a.k.a worker nodes)
- User interface must not be used for computing
- Fair share between users tasks and computations provided by queuing system
 - PBS/Torque/Moab on Zeus
 - SLURM on Prometheus

User log on user interface (UI) node using SSH protocol

Ul names:

- login@zeus.cyfronet.pl
- Iogin@login01.pro.cyfronet.pl
- SSH clients
 - on Linux and MacOS included in OS
 - ssh command in terminal
 - on Windows
 - PuTTY <u>http://www.chiark.greenend.org.uk/~sgtatham/putty/</u>
 - KiTTY http://www.9bis.net/kitty/
 - Babun http://babun.github.io/faq.html
 - MobaXterm <u>http://mobaxterm.mobatek.net</u>
- copying files and directories
 - on Linux and MacOS included in OS
 - scp command in terminal
 - on Windows
 - WinSCP <u>http://winscp.net/</u>

- Zeus consist user interface node (UI) and several groups of nodes with different configurations
 - normal worker nodes (1198 nodes including 136 with vast RAM amount)
 - vSMP big virtual machines (each consist several ordinary work nodes)
 - GPGPU nodes with GPGPU (44 nodes, 208 GPGPU cards)

Property	Zeus	Zeus BigMem	Zeus vSMP	Zeus GPGPU
CPU frequency	2.26-2.67 GHz	2.67; 2.30 GHz	2.67 GHz	2.93; 2.40 GHz
RAM	16, 24 GB	96, 256 GB	up to 6 TB	72, 96 GB
cores per node	8, 12	12, 64	up to 768	12
InafiniBand interconnect	available, QDR	available, QDR	_	available, QDR
additional		_	RAMDisk	GPGPU cards

Prometheus consist user interface nodes (UI), service nodes and worker nodes

- worker nodes (2 232 nodes, each witch 2x Intel Xeon E5-2680v3 processors)
 - 72 nodes with GPPGU (2x nVidia Tesla K40)

Property	Prometheus
CPU frequency	2.50 GHz
RAM	128 GB
cores per node	24
InafiniBand interconnect	available, FDR 56 Gb/s

- Storage of data access through NFS (quite slow, should not be used for heavy I/O calculations)
 - \$HOME user's home directory
 - quota 7 GB
 - daily backup
 - \$STORAGE for long lasting storage of data
 - quota 100 GB

\$PLG_GROUPS_STORAGE-additional storage gained through PLGrid grants
system

- Temporary scratch file systems
 - \$TMPDIR local file system located on worker node
 - accessible only from node to which it is attached
 - accessible only during the run of computation task
 - \$SCRATCH-distributed scratch Lustre file system
 - accessible from all nodes of cluster (including UI)
- To check qouta use zeus-fs

GRID

- Storage of data access through NFS (quite slow, should not be used for heavy I/O calculations)
 - \$STORAGE for storage of data
 - quota 40 GB
 - \$PLG_GROUPS_STORAGE-additional storage gained through PLGrid grants
 system
- Temporary scratch file systems
 - \$SCRATCH-distributed scratch Lustre file system
 - accessible from all nodes of cluster (including UI)
- To check qouta use pro-fs

- Scientific software usually needs specific runtime environment (i.e. additional libraries) and sometimes technical knowledge is needed to install them efficiently
- Modules package is solution for loading runtime environments on every cluster in PLGrid infrastructure
- Advantages
 - simplicity of preparing software to run efficiently
 - computation scripts could be transferable between HPC clusters
 - possibility of concurrent runs of different versions of software
 - on hybrid HPC systems transparent switching to most efficient version of software
- Drawbacks
 - additional command to remember .-)

- Load environment for scientific package
 - module add <module-name> (i.e. module add plgrid/apps/gaussian)
 - module load <module-name> (i.e. module load plgrid/apps/matlab)
- Remove module
 - module rm < module-name > (i.e. module rm plgrid/apps/gaussian)
 - module unload < module-name> (i.e. module unload
 plgrid/apps/matlab)
- Listing of all available modules
 - module avail
 - module avail tools (only from tools branch)
 - module avail plgrid/apps/gaussian (all available Gaussian versions)
- Listing of loaded modules
 - module list
- Clearing all loaded modules
 - module purge

Each software package installed in PLGrid infrastructure has it's own module

plgrid/<branch>/<software-name>/<version>

- Branch kinds
 - apps for most of scientific packages
 - libs for software libraries
 - tools for toolkits and helper packages
- Examples:

•plgrid/tools/intel/14.0
•plgrid/apps/gaussian/g09.D.01
•plgrid/tools/python/2.7.5
•plgrid/apps/terachem/1.5

https://apps.plgrid.pl/

Queuing system

- manage all computational task on cluster
- monitor available resources
- acts as matchmaker between needs of jobs and resources
- empowers fair share between different users
- All computational tasks are run as jobs queued in queues and run according to their priority and available resources.
- Priority of job depends on
 - amount of resources obtained by user in computational grant
 - amount of resources requested by job
 - **maximum wall time of computation** is most essential resource
 - amount of other resources concurrently used by job's owner

• HPC clusters available in PLGrid use several kinds of queuing systems

PBS:

- Torque (<u>http://www.adaptivecomputing.com/products/open-source/torque/</u>)
- PBS Pro (<u>http://www.pbsworks.com/product.aspx?id=1</u>)
- SLURM (<u>http://slurm.schedmd.com</u>)

HPC Centre	Cluster	Queuing system
ACC Cyfronet AGH	Prometheus	SLURM
	Zeus	Torque/Moab
ICM	Hydra	SLURM
	Topola	SLURM
PSNC	Reef	PBS
	Inula	PBS
TASK	Tryton	SLURM
	Galera Plus	PBS/Maui
WCSS	Bem	PBS Pro
	SuperNova	PBS Pro

- User interact with PBS queuing system using commands
 - qsub-to submit new job to queue
 - qstat gives information about jobs running in queuing system
 - qdel deletes jobs from queue
 - qalter modifies queued job
- Each job has got unique job identifier (jobID)

- Command qsub submits new job in queue
- All parameters describing job's requirements could be included in batch script and given to queuing system using command
 - qsub script.pbs
- Example script

#!/bin/env bash

Commands that will be run after start of the job echo "Computation started on work node: "; hostname

```
module add plgrid/apps/matlab
```

matlab -nodisplay <matlab.m >matlab.out

- Commands qstat and zeus-jobs give view of jobs scheduled in queuing system
- Jobs States
 - Q queued
 - R running
- Additional helpful flags
 - qstat -u \$USER information about \$USER's jobs
 - qstat -n <jobID>- information about nodes allocated for job <jobID>
 - qstat -q view of general state of system
 - seus-jobs -e- or zeus-jobs -e+-jobs sorted according to efficiency
 - seus-jobs -w-lists jobs only with low efficiency
 - _zeus-jobs -f (<jobID>) detailed information about jobs
 - zeus-jobs -h-help screen

Available queues

Queue	max time	Information
l_test	0:15:00	for tests
l_prio	1:00:00	
l_short	3:00:00	default
l_long	336:00:00	
l_exclusive	336:00:00	jobs allocating whole nodes
l_interactive	72:00:00	interactive jobs
plgrid-testing	1:00:00	
plgrid	72:00:00	
plgrid-long	168:00:00	
l_infinite	2160:00:00	*
l_bigmem	336:00:00	nodes with big RAM*
gpgpu	336:00:00	nodes with GPGPU*
vsmp	-	vSMP nodes*

qstat -Q -f <queue-name> - detailed information about queue

qstat <queue-name> - lists jobs in specified queue

* - queues available after request


```
#!/bin/env bash
# Commands that will be run after start of the job
echo "Computation started on work node: "; hostname
module add plgrid/apps/gaussian
g09 h2o.gjf
```

- PBS options provide information about job requirements to queuing system. They could be
 - given in command line qsub [opcje PBS]
 - included in first lines of batch script with #PBS at start of line


```
#!/bin/env bash
```

```
# Commands that will be run after start of the job
echo "Computation started on work node: "; hostname
module add plgrid/apps/gaussian
echo "Current working directory:"; pwd
# Changing directory to one from which PBS script was stated
(where inputs should be stored)
cd $PBS_O_WORKDIR
echo "Current working directory:"; pwd
g09 h2o.gjf
```

 Batch script is always executed in user's \$HOME directory on worker node, to change directory to script input director environment variable \$PBS O WORKDIR could be used

PBS adds environmental variables which could ease performing computation

Variable	Description
PBS_JOBID	job identifier (jobID)
PBS_O_WORKDIR	dir, from which batch script was submitted
PBS_NP	amount of computing cores requested by job
TMPDIR	local scratch file directory temporary dir for job
SCRATCH	scratch directory on distributed Lustre file system

- Additionally, when module tools/scratch used
 - SCRATCHDIR distributed scratch file directory temporary dir for job

- qsub command uses various options to provide queuing system with additional info about the job
 - -q queue defines queue
 - -N name give name to job
 - $\blacksquare I$ informs that job is going to be not batch but interactive
 - -X enables X11 forwarding
 - -l gives information about requirements requested by job
 - -t n-m, k, l starts array job
 - **-**M <user's e-mail>email for notifications
 - Im bea information when notifications should be send: at beginning(b), end (e) or execution error (a)
 - -A grantID information about computational grant (if omitted job use default)
- When option -q is omitted job is putted into default queue

```
GRID
```

```
#!/bin/env bash
##### Max amount of RAM requested by job
#PBS −1 mem=1qb
##### Wall time requested by job
#PBS -1 walltime=10:00
##### Oueue name
#PBS -q l prio
##### Name of job in queuing system
#PBS -N q09.ethanol
# Set environment for default Gaussian default version
module add plgrid/apps/gaussian
# Scratch directory for job
echo "Temporary files stored in" $GAUSS SCRDIR
# Changing directory to one from which PBS script was stated
cd $PBS O WORKDIR
# Commands to start computations
g09 ethanol.gjf
# Deleting temporary files
rm -rf $GAUSS SCRDIR
```


■ There are several recourses available for job (through option -1)

- walltime maximal execution wall time
- nodes=x:ppn=y amount of nodes and cores per node
- mem amount of memory requested by job
- pmem amount of memory per core requested by job
- Parameter values should be given in "parameter=value" notation, coma separated

i.e. qsub -1 walltime=10:00:00, nodes=1:ppn=12, mem=12gb

- Parameter formats
 - time hhh:mm:ss
 - memory b, kb (=1024b), mb (=1024kb), gb (=1,024mb)

worker nodes nodes = amount - of - nodes : ppn = cores - pernode : properties - of - node (np. nodes = 2 : ppn = 12 - 2 nodes, 12 cores each)

```
GRID
```

```
#!/bin/env bash
##### Max amount of RAM requested by job
#PBS -1 mem=1qb
##### Amount of nodes=x:cores=y requested by job
#PBS -1 nodes=1:ppn=12
##### Wall time requested by job
#PBS -1 walltime=10:00
##### Queue name
#PBS -q l prio
##### Name of job in queuing system
#PBS -N q09.ethanol
# Set environment for default Gaussian default version
module add plgrid/apps/gaussian
# Scratch directory for job
echo "Temporary files stored in" $GAUSS SCRDIR
# Changing directory to one from which PBS script was stated
cd $PBS O WORKDIR
# Commands to start computations
q09 ethanol.gjf
# Deleting temporary files
rm -rf $GAUSS SCRDIR
```

- Interactive work on cluster should be done using interactive jobs
 - qsub -I
 - qsub −I −X when X11 forwarding is necessary
- Queue l_interactive is dedicated for interactive work
- When GUI is necessary user should remember about
 - Iogin on cluster using X11 forwarding
 - launching X11 server on client side
- User interface must not be used for computing

- qdel command is used to delete unwanted jobs from queuing system
 - qdel <JobID>
- Information about dead, zombie jobs which cannot be deleted using qdel should be sended to system administrators through

Helpdesk PL-Grid PL

- https://helpdesk.plgrid.pl
- helpdesk@plgrid.pl

directly to system administrators zeus@cyfronet.pl

- zeus-jobs and zeus-jobs-history could be used to monitor efficiency of jobs
 - memory usage
 - CPU usage
- zeus-jobs running and queued jobs
- zeus-jobs-history historical data of completed jobs
- zeus-jobs* usage
 - seus-jobs -e- or zeus-jobs -e+ jobs sorted according to efficiency
 - zeus-jobs -w lists jobs only with low efficiency
 - seus-jobs -f (<jobID>) detailed information about jobs
 - zeus-jobs -h help screen

Array jobs enable queuing several jobs using one qsub command

```
qsub -t n-m,k,l script.pbs (ie. qsub -t 0-9 or qsub -t
2,4,7)
```

 All jobs within array have same PBS_O_WORKDIR, there are identified by additional variable \$PBS ARRAYID

```
#!/bin/env bash
#PBS -t 0-4,9
#PBS -l walltime=5:00
OUTPUTDIR=$PBS_O_WORKDIR/${PBS_JOBID%%\[*}
mkdir -p $OUTPUTDIR
cd $TMPDIR
hostname > job.$PBS_ARRAYID
mv job.$PBS ARRAYID $OUTPUTDIR
```

qstat -t-expands job arrays while listing jobs in queuing system

- User interact with SLURM queuing system using commands
 - sbatch to submit new job to queue
 - squeue gives information about jobs running in queuing system
 - scancel deletes jobs from queue
 - sinfo/scontrol -gives detailed information about queue, job or node
 - smap gives graphical information about state of HPC cluster
 - srun runs interactive job
- Each job has got unique job identifier (jobID)

```
#SBATCH -J adf.ethanol
#SBATCH -N 1
#SBATCH --ntasks-per-node 1
#SBATCH --mail-type=ALL
#SBATCH --mail-user=k.noga@cyfronet.pl
#SBATCH --time=10:00
#SBATCH --mem 24000
#SBATCH -p plgrid
module add plgrid/apps/adf
cd $SLURM SUBMIT DIR
adf < ethanol.in > ethanol.log
```

In SLURM job is sent to partition not to queue

- flag -p <partition_name> or --partition <partition_name>
- partition for PLGrid users: plgrid

- Commands squeue and pro-jobs give view of jobs scheduled in queuing system
- Jobs States
 - PD queued
 - R running
- Additional helpful flags
 - squeue --user \$USER information about \$USER's jobs
 - pro-jobs -e- or zeus-jobs -e+-jobs sorted according to efficiency
 - pro-jobs -w-lists jobs only with low efficiency
 - pro-jobs -f (<jobID>) detailed information about jobs
 - pro-jobs -h-help screen
- In addition scontrol and sinfo and smap give information about status of cluster
 - scontrol show job <jobID> information about <jobID> job
 - scontrol show node <nodes_list> information about nodes
 - sinfo-lists all available nodes

- pro-jobs and pro-jobs-history could be used to monitor efficiency of jobs
 - memory usage
 - CPU usage
- pro-jobs running and queued jobs
- pro-jobs-history historical data of completed jobs
- pro-jobs* usage
 - pro-jobs -e- or zeus-jobs -e+ jobs sorted according to efficiency
 - pro-jobs -w-lists jobs only with low efficiency
 - pro-jobs -f (<jobID>) detailed information about jobs
 - pro-jobs -h help screen

- PBS job script is always started in user's \$HOME directory on WN. Access to directory from which script was submitted via PBS_O_WORKDIR
- All batch jobs have got files in which data from standard outputs is stored
 - standard output stream (stdout): name-of-script.o<JobID>
 - standard error stream (stderr): name-of-script.e<JobID>
 - Those files should not be big (less than several MBs) and are accessible only after finishing the job
- When commands in PBS script print big amount of data into output streams user should redirect that data to file(s)
 - for standard output stream (stdout): command > file.out
 - for standard error stream (stderr): command 2> file.err
 - for both streams to one file: command &> file.log

Best practices

- During batch job submission user should always
 - specify maximal time of job exectution (parameter walltime)
 - do not use queue l_infinite if not necessary
 - specify maximal RAM amount needed by job through mem (or pmem)
 - enabling checkpoints
 - for parallel computations use all cores on nodes when possible via l_exclusive
 - when big amount of data is going to be passed to standard output streams redirect it to files
 - Ioad runtime environment of software via module command in batch script
 - do not load software modules in scripts loaded at user's login (i.e..bashrc)

Best practices

- During batch job preparation user
 - must not use \$HOME and \$STORAGE for heavy I/O computations
 - should always use scratch file systems
 - Iocal scratch disk attached to WN (accessible through \$TMPDIR)
 - access to data only from WN to which disk is attached
 - big amount of very small in size I/O operations (<<1MB per read/write)
 - rather small files (up to 5 GB per core)
 - distributed scratch Lustre file system (\$SCRATCH and \$SCRATCHDIR)
 - necessity of access to scratch data from multiple WNs
 - big or huge temporary files (10+ GB)
 - big I/O operations (1+ MB)
 - easy access to temporary files during computation from UI node
 - **clean up** temporary files and directories after computations

Rejestracja: <u>https://portal.plgrid.pl</u>

helpdesk@plgrid.pl

+48 12 632 33 55 wew. 312