
EPOS Thematic Core Service Anthropogenic Hazards

EPISODES Platform was partially funded by IS-EPOS project. © 2020 IG PAS & ACC Cyfronet AGH Page 1 of 2

Application code files

What files can be stored with the application
The application codes stored in the repository created for the application have to contain at least one file, with a name as defined in the executabl

 property of the . This file will be the entry point of the application - the computation will be started by calling eScriptName Application Definition file
this script. Apart from that, there might be any number of other application files, which might be further organized in directories. The names of the
other files and directories do not have to be specified and known beforehand, but the user has to ensure correct syntax of the internal function
calls.

When programming the codes, bear in mind that they will be executed on a remote computing infrastructure, therefore, there are some limitations
and rules you have to follow:

Do not program any GUI component to your application - it will be running on a distant computing node, which will not have access to
any graphical interface. If you need to input some parameters, use the forms generated by the EPISODES Platform. In case you need to
display any plots or any other graphics, save them to files and declare the files as the application results (see the Application Definition

 for information how these could be specified).file guide
Do not use any interactive inputs - at the moment, the EPISODES Platform does not support requesting any user input from the
application that is running on a remote computing node - this feature is envisaged, but not yet implemented. Therefore, your application
has to run in a batch mode - where all the inputs are specified at the moment of running
Using absolute paths in your scripts would lead to an error when the script is executed on a remote computing infrastructure. You can
still use relative paths, as the directory structure will be preserved as it is in the application repository during the computation.

The script selected as the executable of the application (with the property) has to be programmed in the language set in executableScriptName sc
 in the , it also has to declare the inputs and outputs in accordance with that file. As the format of the script riptLanguage Application Definition file

and the loaded data depends on the programming language, they are describe on a per-language basis in the following sections.

MATLAB
When choosing MATLAB (or Octave) as the programming language, the file has to be created so that it contains a main function with the same
number of inputs and outputs as defined in the application definition file. Before the script execution, the data is read from all the input files and is
inserted to the function in the order in which the files were declared in the . With the default setting (single file) Application Definition file multiplicity
for the input file (see the), the Application Definition file structure description file is read to a MATLAB variable which is passed directly as
argument to the function. If the multiplicity is set to any other value, all the files provided by the user for this input are read to separate MATLAB
variables and packed into a single cell array, and this cell array is passed as a single argument to the function. Note, that the order of variables in
the cell array is not guaranteed (see the information on the and property in the multiplicity typeLabel Application Definition file structure

). The input parameter values (they are of simple types) are directly passed as arguments to the function right after the input file description
variables, in the same order in which they were declared in the . After the script execution, the outputs declared with the Application Definition file i

 property set to , are automatically saved to files (other outputs have to be saved manually inside the function).sReturnedValue true .mat

The input and output variables defined in the function can have any names as long as they are allowed by MATLAB syntax.

Example

The example below shows the connection between the Application Description file (Excerpt1) and the script containing the main function (Excerpt
2) and the order of arguments in that function.

The files containing the codes are the crux of the application. All the algorithms defining the
analysis or processing of data should be defined there in a chosen programming language.

https://docs.cyfronet.pl/display/ISDOC/Application+Definition+file
https://docs.cyfronet.pl/display/ISDOC/Application+Definition+file
https://docs.cyfronet.pl/display/ISDOC/Application+Definition+file
https://docs.cyfronet.pl/display/ISDOC/Application+Definition+file
https://docs.cyfronet.pl/display/ISDOC/Application+Definition+file
https://docs.cyfronet.pl/display/ISDOC/Application+Definition+file#ApplicationDefinitionfile-StructureDescription
https://docs.cyfronet.pl/display/ISDOC/Application+Definition+file#ApplicationDefinitionfile-StructureDescription
https://docs.cyfronet.pl/display/ISDOC/Application+Definition+file#ApplicationDefinitionfile-StructureDescription
https://docs.cyfronet.pl/display/ISDOC/Application+Definition+file

EPOS Thematic Core Service Anthropogenic Hazards

EPISODES Platform was partially funded by IS-EPOS project. © 2020 IG PAS & ACC Cyfronet AGH Page 2 of 2

{
 "scriptLanguage" : "MATLAB",
 "executableScriptName" : "sampleFunction.m",
 "inputFiles" : ["integer_vector", "string_vector"],
 "inputParameters" : ["TEXT", "DOUBLE"],
 "outputs": [{
 "dataType" : "double_vector",
 "isReturnedValue" : true
 },
 {
 "dataType" : "boolean_vector",
 "isReturnedValue" : true
 },
 {
 "fileName" : "plot.png"
 }],
 "requiredTools": ["octave"]
}

Excerpt 1. Content of the Application Description file with two input files, two input parameters and three outputs.

function [outputDoubleValues, outputBooleanValues] = sampleFunction(intValues, stringValues, text,
multiplicator)
 outputDoubleValues = double(intValues) * multiplicator;
 outputBooleanValues = strcmp(stringValues, text);
 plot(outputDoubleValues);
 print('-dpng', 'plot.png');
end

Excerpt 2. Executable script of the application (sampleFunction.m), containing the main function.

Knowing that the order of inputs and outputs of the function corresponds to the order in which they are defined in the Application Definition file
(Excerpt 1), and that variables come before variables, in the above example the order of variables would be as inputFiles inputParameters
follows:

intValues - corresponds to the input file with type 'integer_vector'
stringValues - corresponds to the input file with type 'string_vector'
text - corresponds to the input parameter with type TEXT
multiplicator - corresponds to the input parameter with type DOUBLE
outputDoubleValues - corresponds to the output with type 'double_vector'
outputBooleanValues - corresponds to the output with type 'boolean_vector'

Additionally, another file is produced within the script - an image file - it is not declared in the function outputs, but is createde inside plot.png

the function.

Related Documents
Application Definition file
Application code files
Application Description file

https://docs.cyfronet.pl/display/ISDOC/Application+Definition+file
https://docs.cyfronet.pl/display/ISDOC/Application+Description+file

	Application code files

