Skip to end of metadata
Go to start of metadata

Catalog – General Description

The catalogue is a variable in the Matlab format file and it is kept in a file MAT. The structure is array with named fields that can contain data of various types and sizes. In the file there is only one variable, the file name and variable name are optional.

The variable describing the catalogue is a vector of structures, consisting of fields:

  • field – name of field in the catalogue (text value);
  • type – type of field in the catalogue and way of showing the field (numeric value); the numbers description is shown below
  • val – column array of For the text the column is an array type cell with text fields. For the remaining value the column is a numeric column.
  • unit – description of unit for individual data (text value).
  • description – short description of the parameter (text value).
  • fieldType – semantic meaning of the field. When some field values are similar/related then fieldType name is entered and for another case is entered.

 

Table The general parameters in catalogue MAT format

field

type

val

unit

description

fieldType

Comments

Data format

ID

3

data vector


Event ID

 

required field

text

Time

5

data vector


Event origin time

 

required field, Matlab serial numerical time

double

Lat

14,15,24,25

data vector

deg

Latitude


deg – North positive

double

Long

14,15,24,25,34,35

data vector

deg

Longitude


deg – East positive

double

Depth

11-13

data vector

km

Hypocenter depth measured from the ground level


Hypocenter depth counted downwards from surface (positive values below surface)

double

Elevation

13

data vector

km

Hypocenter elevation measured over the sea level


Hypocenter elevation counted upwards from sea level (positive values above sea level, negative values below sea level)

double

X

10

data vector

m, km

X coordinate

 

Original coordinates if other than geographical. Description of coordinates in the metadata

double

Y

10

data vector

m, km

Y coordinate


double

Z

10

data vector

m, km

Z coordinate


double

EPI_err

10

data vector

M

Epicentral error



double

Depth_err

10

data vector

m

Depth error



double

Nl

2

data vector


No of stations used in the localisation



double

M0

222

data vector

Nm

Scalar moment



double

Mw

4

data vector


Moment magnitude

'Magnitude'


double 0.1[1]

ML

4

data vector


Local magnitude

'Magnitude'


double 0.1

Ns_decomp

2

data vector


No of stations used in MT inversion



double

DecompMethod

3

data vector

char

Method used to decompose moment tensor



text

MTrr

222

data vector

Nm

Full solution: Moment tensor rr component (r – up)



double

MTss

222

data vector

Nm

Full solution: Moment tensor ss component (s – South)



double

MTee

222

data vector

Nm

Full solution: Moment tensor ee component (e – East)



double

MTrs

222

data vector

Nm

Full solution: Moment tensor rs component



double

MTre

222

data vector

Nm

Full solution: Moment tensor re component



double

MTse

222

data vector

Nm

Full solution: Moment tensor se component



double

MT_err

222

data vector

Nm

Full solution: Moment tensor error



double

ISO

120

data vector

%

Isotropic MT component


% - positive or negative

double

CLVD

120

data vector

%

CLVD component


% - positive or negative

double

DC

20

data vector

%

Double-Couple component


% - only positive

double

StrikeA

30

data vector

deg

Strike of nodal plane A


The values range from 0 to 360

double

DipA

20

data vector

deg

Dip of nodal plane A


The values range from 0 to 90

double

RakeA

130

data vector

deg

Rake of nodal plane A


The values range from -180 to 180

double

SlopeA

20

data vector

deg

Inclination for nodal plane A


The values range from 0 to 90

double

StrikeB

30

data vector

deg

Strike of nodal plane B


The values range from 0 to 360

double

DipB

20

data vector

deg

Dip of nodal plane B


The values range from 0 to 90

double

RakeB

130

data vector

deg

Rake of nodal plane B


The values range from ‑180 to 180

double

SlopeB

20

data vector

deg

Inclination for nodal plane B


The values range from 0 to 90

double

Strike_err

10

data vector

deg

Strike error



double

Dip_err

10

data vector

deg

Dip error



double

Rake_err

10

data vector

deg

Rake error



double

Slope_err

10

data vector

deg

Inclination error



double

Plunge_T

10

data vector

deg

Plunge of T-axis


The values range from 0 to 360

double

PlungeT_err

10

data vector

deg

T-axis plunge error



double

Trend_T

10

data vector

deg

Trend of T-axis


The values range from 0 to 90

double

TrendT_err

10

data vector

deg

T-axis trend error



double

Plunge_P

10

data vector

deg

Plunge of P-axis


The values range from 0 to 360

double

PlungeP_err

10

data vector

deg

P-axis plunge error



double

Trend_P

10

data vector

deg

Trend of P-axis


The values range from 0 to 90

double

TrendP_err

10

data vector

deg

P-axis trend error



double

DCrr

222

data vector

Nm

Double-Couple solution: Moment tensor rr component (r - up)



double

DCss

222

data vector

Nm

Double-Couple solution: Moment tensor ss component (s - South)



double

DCee

222

data vector

Nm

Double-Couple solution: Moment tensor ee component (e - East)



double

DCrs

222

data vector

Nm

Double-Couple solution: Moment tensor rs component



double

DCre

222

data vector

Nm

Double-Couple solution: Moment tensor re component



double

DCse

222

data vector

Nm

Double-Couple solution: Moment tensor se component



double

DC_err

222

data vector

Nm

Double-Couple solution: Moment tensor error



double

DCStrikeA

30

data vector

deg

Double-Couple solution: Strike of nodal plane A


The values range from 0 to 360

double

DCDipA

20

data vector

deg

Double-Couple solution: Dip of nodal plane A


The values range from 0 to 90

double

DCRakeA

130

data vector

deg

Double-Couple solution: Rake of nodal plane A


The values range from -180 to 180

double

DCStrikeB

20

data vector

deg

Double-Couple solution: Strike of nodal plane B


The values range from 0 to 90

double

DCDipB

30

data vector

deg

Double-Couple solution: Dip of nodal plane B


The values range from 0 to 360

double

DCRakeB

20

data vector

deg

Double-Couple solution: Rake of nodal plane B


The values range from 0 to 90

double

DCStrike_err

10

data vector

deg

Double-Couple solution: Strike error



double

DCDip_err

10

data vector

deg

Double-Couple solution: Dip error



double

DCRake_err

10

data vector

deg

Double-Couple solution: Rake error



double

DCPlunge_T

10

data vector

deg

Double-Couple solution: Plunge of T-axis


The values range from 0 to 90

double

DCPlungeT_err

10

data vector

deg

Double-Couple solution: T-axis plunge error



double

DCTrend_T

10

data vector

deg

Double-Couple solution: Trend of T-axis


The values range from 0 to 360

double

DCTrendT_err

10

data vector

deg

Double-Couple solution: T-axis trend error



double

DCPlunge_P

10

data vector

deg

Double-Couple solution: Plunge of P-axis


The values range from 0 to 90

double

DCPlungeP_err

10

data vector

deg

Double-Couple solution: P-axis plunge error



double

DCTrend_P

10

data vector

deg

Double-Couple solution: Trend of P-axis


The values range from 0 to 360

double

DCTrendP_err

10

data vector

deg

Double-Couple solution: P-axis trend error



double

TNrr

222

data vector

Nm

TN solution: Moment tensor rr component (r - up)



double

TNss

222

data vector

Nm

TN solution: Moment tensor ss component (s - South)



double

TNee

222

data vector

Nm

TN solution: Moment tensor ee component (e - East)



double

TNrs

222

data vector

Nm

TN solution: Moment tensor rs component



double

TNre

222

data vector

Nm

TN solution: Moment tensor re component



double

TNse

222

data vector

Nm

TN solution: Moment tensor se component



double

TN_err

222

data vector

Nm

TN solution: Moment tensor error



double

TNStrikeA

30

data vector

deg

TN solution: Strike of nodal plane A


The value range from 0 to 360

double

TNDipA

20

data vector

deg

TN solution: Dip of nodal plane A


The value range from 0 to 90

double

TNRakeA

130

data vector

deg

TN solution: Rake of nodal plane A


The value range from -180 to 180

double

TNStrikeB

20

data vector

deg

TN solution: Strike of nodal plane B


The value range from 0 to 90

double

TNDipB

30

data vector

deg

TN solution: Dip of nodal plane B


The value range from 0 to 360

double

TNRakeB

20

data vector

deg

TN solution: Rake of nodal plane B


The value range from 0 to 90

double

TNStrike_err

10

data vector

deg

TN solution: Strike error



double

TNDip_err

10

data vector

deg

TN solution: Dip error



double

TNRake_err

10

data vector

deg

TN solution: Rake error



double

TNPlunge_T

20

data vector

deg

TN solution: Plunge of T-axis


The value range from 0 to 90

double

TNPlungeT_err

10

data vector

deg

TN solution: T-axis plunge error



double

TNTrend_T

30

data vector

deg

TN solution: Trend of T-axis


The value range from 0 to 360

double

TNTrendT_err

10

data vector

deg

TN solution: T-axis trend error



double

TNPlunge_P

20

data vector

deg

TN solution: Plunge of P-axis


The value range from 0 to 90

double

TNPlungeP_err

10

data vector

deg

TN solution: P-axis plunge error



double

TNTrend_P

30

data vector

deg

TN solution: Trend of P-axis


The value range from 0 to 360

double

TNTrendP_err

10

data vector

deg

TN solution: P-axis trend error



double

NsP

2

data vector


No of stations used in the P-wave spectral analysis



double

E

222

data vector

J

Total seismic energy



double

E_err

222

data vector

J

Total seismic energy error



double

Ep

222

data vector

J

P-wave energy



double

Ep_err

222

data vector

J

P-wave energy error



double

fp

12

data vector

Hz

P-wave corner frequency



double

fp_err

12

data vector

Hz

P-wave corner frequency error



double

rad_eff_P

12

data vector


Radiation efficiency P



double

Qp

10

data vector


Quality factor Pwaves



double

NsS

2

data vector


No of stations used in the S-wave spectral analysis



double

Es

222

data vector

J

S-wave energy



double

Es_err

222

data vector

J

S-wave energy error J



double

fs

12

data vector

Hz

S-wave corner frequency Hz



double

fs_err

12

data vector

Hz

S-wave corner frequency error Hz



double

Qs

10

data vector


Quality factor Swaves



double

rad_eff_S

12

data vector


Radiation efficiency S



double

R

10

data vector

m

Source radius



double

R_err

10

data vector

m

Source radius error



double

R_model

3

data vector

char

Source radius model used (Brune, Madariaga, Sato&Hirasawa)



text

rad_eff

12

data vector


Radiation efficiency



double

sigma_a

13

data vector

MPa

Apparent stress



double

delta_sigma

13

data vector

MPa

Static stress drop



double

sigma_d

13

data vector

MPa

Dynamic stress drop



double

sigma_rms

13

data vector

MPa

RMS dynamic stress drop



double

vr

10

data vector

m/s

Rupture velocity



double

vr_model

3

data vector

char

Rupture velocity model (unilateral etc.)



text

SW_eff

12

data vector


Savage-Wood efficiency



double

u

12

data vector

m

Fault slip



double

RMS_time_residual

13

data vector

sec

Time residual after location in a 3D model



double

Hypocenter_quality_index

2

data vector


Average number of station, azimuthal coverage, stability of location against noise


Apart from the regular parameters used to select best earthquake location, including min RMS values, max recording stations,  max phase numbers and gap  values, we further used for lacq catalogue the following criteria as derived from 3D inversion of hypocenters using REL3D code (e.g. Guyoton et al GRL1992, Roecker JGR1982,  Boyer 1996).


3 quality levels are used for the Lacq seismicity hypocenters

quality level 1:

-conditioning value <100

Specifically , the conditioning value threshold aims to remove ill-conditioned matrix patterns.

- max location error (e.g. Tarantola Valette 1982) as estimated for 3D velocity model solutions <1 km

- last iteration step for convergence before location completed < 0.5 km

quality level 2:

- conditioning value <100

quality level 3:

- all selected events (in the lacq case study it correspond to Nmin=6 stations and  a residual variance <0.2 s)


Reference:

Boyer, E. (1996). Sismicité induite et production pétrolière. Mémoire de diplôme d’ingénieur, Université Joseph Fourier - Grenoble I.

Guyoton F, J.R.Grasso, and P.Volant,Interrelation between induced seismic instabilities and complex geological structure Geophys. Res. Lett., 19, 705-708, 1992.

Roecker, S., Velocity structure  of the Pamir-Hindu Kush region: Possible evidence for subjected crust, JGR, 87, 945-959, 1982

Tarantola, A., & Valette, B. (1982). Generalized nonlinear inverse problems solved using the least squares criterion. Reviews of Geophysics, 20(2), 219-232.



double

Comments

3


char

Particularities of the respective event (main shock, aftershock etc. ) and parameter estimation issues/uncertainties description



text

M0_p

222

data vector

Nm

P-wave scalar moment



double

M0_s

222

data vector

Nm

S-wave scalar moment



double

M0_Dev_p

222

data vector

Nm

P-wave scalar moment error



double

M0_Dev_s

222

data vector

Nm

S-wave scalar moment error



double

M0_Dev

222

data vector

Nm

Scalar moment error



double

P

222

data vector

m^3

Seismic potency



double

X-relErr

4

data vector

m

Relative error in X coordintate



double

Y-relErr

4

data vector

m

Relative error in Y coordintate



double

Z-relErr

4

data vector

m

Relative error in Z coordintate



double

ML-rel

4

data vector


Relative magnitude calibrated with local magnitude of larger event in the sequence

'Magnitude'


double

NCCP

2

data vector


Number of cross-correlated P-wave data



double

NCCS

2

data vector


Number of cross-correlated S-wave data



double

NCTP

2

data vector


Number of catalog P-wave data



double

NCTS

2

data vector


Number of catalog S-wave data



double

RMSCC

13

data vector


RMS residual for CC-derived differential arrivals



double

RMSCT

13

data vector


RMS residual for catolog-derived differential arrivals



double

CID

2

data vector


Cluster ID



double

usedStationLocation

3

data vector


Name of stations from which data was used for localization computation



text

unusedStationLocation

3

data vector


Name of stations from which data was not used for localization computation



text



The Numbers of Data type:

1 – the real data without limits,

2 – the integer data,

3 – text value,

4 – the real number rounded to 0.1 (shown as 11),

5 – time in Matlab format serial time – the time display format; seconds with accuracy 1/10,

6 – the real data display in an engineering manner with one decimal place, e.g.: 3.5E6, (obsolete, recommended 2cd)

7 – the real data display in an engineering manner with two decimal place, (obsolete, recommended 2cd)

bc – (b and c are code digits) the real data display in fix-point manner with at minimum b places before decimal and c decimal place

                e.g. For number 3.149.

                10:          „3”

                11:          „3.1”

                12:          „3.15”

                20:          „03”

                23:          „03.149”

1bc– the same manner as bc, but with place for a sign (space for sign „+”, sign - for sign „-”)

2cd– (c and d are code digits), the real data is displayed in an engineering manner, with place for a sign (space for sign „+”, sign ‘-’ for sign „-”), with c decimal place and exponent expressed by d places. The sign in exponent is always displayed.

                e.g. For number 0.001:

                211:       „1.0E-3”

                221:       „1.00E-3”

                212:       „1.0E-03”

                222:       „1.00E-03”

                e.g. For number 1000:

                211:       „1.0E+3”

                221:       „1.00E+3”

                212:       „1.0E+03”

                222:       „1.00E+03”


Examples catalogs


Bobrek Catalog


field

type

val

unit

description

fieldType

ID

3

data vector


Event ID

 

Time

5

data vector


Event occurrence time

 

Lat

25

data vector

deg

Latitude


Long

25

data vector

deg

Longitude


Depth

13

data vector

km

Hypocenter depth measured from the ground level


Elevation

13

data vector

km

Hypocenter elevation measured over the see level


X

10

data vector

m

X coordinate

 

Y

10

data vector

m

Y coordinate


Z

10

data vector

m

Z coordinate


ML

4

data vector


Local magnitude

'Magnitude'

E

222

data vector

J

Total seismic energy




LGCD Catalog


field

type

val

unit

description

fieldType

ID

3

data vector


Event ID

 

Time

5

data vector


Event occurrence time

 

Lat

24

data vector

deg

Latitude


Long

24

data vector

deg

Longitude


Depth

13

data vector

km

Hypocenter depth measured from the ground level


Elevation

13

data vector

km

Hypocenter elevation measured over the see level


M0

222

data vector

Nm

Scalar moment


Mw

4

data vector


Moment magnitude

'Magnitude'

MTrr

222

data vector

Nm

Full solution: Moment tensor rr component (r – up)


MTss

222

data vector

Nm

Full solution: Moment tensor ss component (s – South)


MTee

222

data vector

Nm

Full solution: Moment tensor ee component (e – East)


MTrs

222

data vector

Nm

Full solution: Moment tensor rs component


MTre

222

data vector

Nm

Full solution: Moment tensor re component


MTse

222

data vector

Nm

Full solution: Moment tensor se component


MT_err

222

data vector

Nm

Full solution: Moment tensor error


ISO

120

data vector

%

Isotropic MT component


CLVD

120

data vector

%

CLVD component


DC

20

data vector

%

Double-Couple component


StrikeA

30

data vector

deg

Strike of nodal plane A


DipA

20

data vector

deg

Dip of nodal plane A


RakeA

130

data vector

deg

Rake of nodal plane A


SlopeA

20

data vector

deg

Inclination for nodal plane A


StrikeB

30

data vector

deg

Strike of nodal plane B


DipB

20

data vector

deg

Dip of nodal plane B


RakeB

130

data vector

deg

Rake of nodal plane B


fp

12

data vector

Hz

P-wave corner frequency


fs

12

data vector

Hz

S-wave corner frequency Hz




Song Tranh Catalog


field

type

val

unit

description

fieldType

ID

3

data vector


Event ID

 

Time

5

data vector


Event occurrence time

 

Lat

24

data vector

deg

Latitude


Long

24

data vector

deg

Longitude


Depth

13

data vector

km

Hypocenter depth measured from the ground level


Elevation

13

data vector

km

Hypocenter elevation measured over the see level


M0

222

data vector

Nm

Scalar moment


Mw

4

data vector


Moment magnitude

'Magnitude'

ML

4

data vector


Local magnitude

'Magnitude'

MTrr

222

data vector

Nm

Full solution: Moment tensor rr component (r – up)


MTss

222

data vector

Nm

Full solution: Moment tensor ss component (s – South)


MTee

222

data vector

Nm

Full solution: Moment tensor ee component (e – East)


MTrs

222

data vector

Nm

Full solution: Moment tensor rs component


MTre

222

data vector

Nm

Full solution: Moment tensor re component


MTse

222

data vector

Nm

Full solution: Moment tensor se component


MT_err

222

data vector

Nm

Full solution: Moment tensor error


ISO

120

data vector

%

Isotropic MT component


CLVD

120

data vector

%

CLVD component


DC

20

data vector

%

Double-Couple component


StrikeA

30

data vector

deg

Strike of nodal plane A


DipA

20

data vector

deg

Dip of nodal plane A


RakeA

130

data vector

deg

Rake of nodal plane A


SlopeA

20

data vector

deg

Inclination for nodal plane A


StrikeB

30

data vector

deg

Strike of nodal plane B


DipB

20

data vector

deg

Dip of nodal plane B


RakeB

130

data vector

deg

Rake of nodal plane B


fp

12

data vector

Hz

P-wave corner frequency


fs

12

data vector

Hz

S-wave corner frequency Hz



[1] The values rounded to 0.1.

Back to top

  • No labels